
On the Attainable Order of Runge-Kutta Methods 
By J. C. Butcher 

A Runge-Kutta method with v stages for solving the equation 

Y = f(X, Y), y(X0) = Yo 

(where y and f are vectors), gives a result 
V 

y(xo + h) = yo + h bjgj, 

where g, g2, 2 * , gs satisfy the equations 

gi f (o + cihy Vo + h ,aijg,) 1, 2, *,v. 

all , a12, ... , , , b2, * *, b, are a set of constants which characterize the process 
and cl, c2, , care defined by 

c = Eaij, i= l,2, ,v. 
j-1 

If the elements of f are differentiable arbitrarily often with respect to x and the 
elements of y, the true solution and the numerical solution can be expanded in 
powers of h. It has been shown [1] that these two expansions agree up to terms in 
h' (that is, the process is of order p) if 

(1) 4= l/y whenever r < p. 

In this formula, b is a typical elementary weight, r is its order, and y is a certain 
integral constant associated with it. 'F itself is a polynomial of degree 1 in 
bl, b2, * * *, b, and degree r -1 in all , a12 , * * a,, . 

To find the values of y for the different 'Z, one may use a result proved in [1]. If 
4i, , ,2 * have values yi, 72, ... , y corresponding to them and if 

(2) cI [4'142 ... 

then 

where r is the order of 4. The notation (2) is used where b is related to 
b] ' 12 , *. , 4* 8 by the formulae 

4k= Ebjj, k =1,2,) 8, 
imi 

i-i k-i j-1 

and xk, (k = 1, 2, ,2 , V) is a function of alla2, , a., but not 
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of bb, b2, * , . The only elementary weight of order 1 is ; b, and this wllbe 
denoted by o. For 0 the value of 7 is 1. 

To illustrate the structure of the various elementary weights consider ei, 4P, 

,1 defined as follows: 

1= [44X 

2= [4]. (Da = Ptil] 

(D = [C1?2A281. 

These can be simply expressed in terms of the parameters of a process. All sum- 
mations are from 1 to v. 

clv = b =a jaik- bic, 
ijk~~~~~~ 

42 = bic,8, 

= 2 = biaijoe2, 

= E bit(E aijcj2)(E aijc3)2(E aijajkck2). 
i j i Ak 

The orders (ri, r2, ra and r, say) are, respectively, 3, 4, 4, 16 and the constants 
Y1, 72, 73, ' -are equal to 

Yi = 3*1*1 = 3, 

72 = 4-1*1*1 = 4, 

ya = 4 3 = 12, 

,y = 16.3.4*4*12 = 9216. 

It is convenient to write each elementary weight using only brackets and the symbol 
0. For the present examples we can write 

4 = [(Di] [fool], 

c1) = [C1'242AB] = [000][000[ff00[l]] 

This notation can be abbreviated by using superscripts to indicate the repetition of 
blocks of symbols and subscripts to indicate repetition of brackets. With these 
abbreviations we have 

4 = [o2] 

D2-=[O ], 

= [2]2, 

3 = [[e2][03]2[ [2II 

In this paper we will be concerned only with explicit (that is, classical) processes 
so that 
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(3) aij= 0 whenever j > i. 

With this restriction, there are at least as many parameters a21, * *, b, to be chosen 
as there are equations of the form (1), when p = v ? 4. It is not surprising, there- 
fore, that there exist Runge-Kutta processes of order v with v stages when v = 1, 2, 
3, 4. However, for p = v > 4, there are more equations (1) than there are param- 
eters to choose so it would not be surprising either if there were no Runge-Kutta 
process of order v with v stages when v = 5, 6, 7, * * . For the case v = 5, a proof of 
this result has been given [2]. However, the proof was exceedingly complicated. In 
this paper the result is proved in a much simpler way for all cases v = 5, 6, 7, ... 

and, moreover, it is shown that processes with p + 1 = v do not exist when p 2 7. 
If we use the notation of Antosiewicz and Gautschi [3] and write p*(v) for the highest 
ordcr attainable with v stages, then, using results from [2] and this paper, one can 
determine the following new information about this function: 

P*(5) = 4 

p*(6) = 5, 

P*(7) = 6, 

p*(8) = 6, 

p*(v) PV-2, v = 9,1O, 

The next simplest questions that one might ask are (a) is there a Runge-Kutta 
process with v = 9 and p = 7; and (b) is there a Runge-Kutta process with v = 10 
and p = 8. The first of these must be answered in the affirmative as the author has 
found such a process; details of this process will be included in a later publication. 
Thus p*(9) 7. The answer to question (b) and, hence, the exact value of p*(10), 
seems to be still a matter of conjecture. 

We will refer to a given process with parameters a21, a8, . , b1, b2, as the 
process P. Another process with parameters d2, , das, , 6 62 , . * will be referred 
to as P. So( p, P) will denote the set of Runge-Kutta processes of order p with v stages 
so that P E So( p, v) if P has P stages and the various cD formed from the numbers 
a2l, , b , , b, satisfy (1). More generally, we write Sn(p, v) for the set of v 
stage processes where, for each 4' of order r ; p, (1) is replaced by 

r I 
'y(n + r)i' 

and n is a non-negative integer. Also we write S(p, v) for the union of the sets 
So(p) P), SI(pI P), S2(p, 00 ), 

In terms of this notation we now state the two main results of this paper. 
THEOREM 1. The set So(p, P) je empty if p f Po 5. 
THEOREM 2. The set So(p, P) i8 empty if p = - I jt 7. 
A number of lemmas now follow and Theorenms 1 and 2 are corollaries to Lemmas 

11 and 14. 
LEMMA 1. If U and V are 3 X 3 matrices with typical elements uqi and vij and if 

UTr has only zero elements in the last row and last column but has rank 2, then either 
U18 = 0 or V88 = 0. 
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Proof. Since UTV is singular, either UT or V is singular. If UT is singular, any 
(row) null vector of UT is a null vector of UTV. Hence, such a vector has only the 
last component non-zero. Hence the last column of U (and, in particular, u13) is 
zero. The other alternative follows similarly. 

In applications of Lemma 1 throughout this paper, the matrices U and V will be 
of the form 

q1(i1) g2(il) g3(il) 

L91(i2) g2(i2) g3(i2)I 

g1(i3) g2(i3) g3(i3)_ 

where ii , i2, i3 are positive integers and gi(i), 92(i), g3(i) are various functions. 
Such a matrix will be written in the abbreviated form 

{qd(i), 92(i), g3(i). i = il. i2 , ia}, 

and the notation will be extended, where necessary, to matrices of higher order. 
At this point it is convenient to introduce also the following notations for 

i 1, 2, *.,v: 
P v 

bi= E jaji j il aijcj, 
j=1 j=l 

bi , bj!aJi 5 L aijcj', 
i-il 1=1 

j==1~~~~~~~~ V V 

bi - X bjf aji X ci - aijcj', 

,, ,, X,, ,,, ,,, , I ,, /I If/ M, M, 
so that bv' -bV_'1b b =b-' 2= bZPt b '_ =c2' C2 = C3 C2 C3 C4 0 

as a consequence of (3). 
LEMMA 2. If P E S(p, v) for p, v t 2 thenP E S(p - 1, v-1), where P is defined 

by 

aj = aij, i, j =t 2y X I 1, 

bj = bj', j = 1, 2, L 1 

Proof. In fact, we will show that, if P C S (p, v), then P !: S71l(p --A 1, v 1). 

Consider 4 = Ei=l bjxj, an elementary weight for the process P with order 
X. 

? p - 1. We first prove that Xi does not depend on any alI for which k or 1 ex- 
ceeds j. This is certainly true in the case of D = 0-, for, here, xi a 1. The result now 
follows in other cases by induction on r, for, if 1 is given by (2), then the orders of 

4,1 x ?2) , 4), are all less than r and 
p 1 

Xi = H E ajkXik 
i=1 k=1 

where Xik, the coefficient of bk in Si,, by the induction hypothesis, does not depend 
on any aim for which 1 or m exceeds A. However, ajk vanishes for k _ j so xi does not 
depend on any aim for which I or m exceeds j. 

For the process P, 4 takes the value E _l bxi, since xi (I ? v 1) is a function 
only of the ak, for which k and I are less than v and, hence, takes the same value for 
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P and P. We have 

E bj = E biaijx,, 
j-1 ij-1 

where we have set the upper limit for j equal to v, since aj, = 0 for all i. This last 
expression, using the notation (2), is equal to [qD] evaluated for P. Moreover, the 
order of [4D] is r + 1 ; p, so that the constant corresponding to y for this elementary 
weight is (r + 1 )y. Hence we have 

(r + 1) __ __ __ _ 

(r + 1)y(r + n + 1) y(r + n + 1)!' 

so that P E Sn+l(p - 1, P 1). 
LEMMA 3. If P E S.(P, P) for P, P ? 2 and c, 1, then P E Sn+l(p- 1,v - 1), 

where P is defined by 

dij aij i, j=1,2, ,v-1, 

&j bj(1 - j)/(n + 1), j -1, 2, P - ,v1. 

Proof. Defninig 4', xj as in the proof of Lemma 2, we have 

E bix 1= E bjx_- E bjcxj 
j-1 n + 1 J-1 - 

The first sum on the right-hand side is equal to k evaluated for P. If we write 
= [(D'42 ... 4P,] and consider the elementary weight cb' = (042 'I. C], we see 

that the coefficient of bi in 'I' differs from the coefficient of bi in cb by the factor 

X a111 = ci 
j-1 

since 1 is the coefficient of b, in q. Hence, 

so that 

jowl n+1 

with the right-hand side evaluated for P. Since P E SA(p, V), we have 

y(r+ n)I 

However, the order of 'i is r + 1 5 p and, corresponding to y, it has associated 
with it the constant y' (r + 1 y). 1 - -- y. x (r + 1)y/r, so that 

(r+ 1)1 

((r + l)y/r)(r + +71)V 

Subtracting this from the value of 4 and dividing by n + 1 we find 

so thatP E S. P v-1 Orl 
j-1 y(r+n.+)1' 

so that P EL S"+'(p ~- 1, v 1). 
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LEMMA 4. If P E S(p, v) and b, = 0, then P E S(p, v - 1), where P is defined by 

air = air, X,; = Is 2, * *, P-1, 

bi = bi, j=;=1,2,P ,V-1. 

LEMMA 5. If PE S(p, v)and c2 = O.thenP E S(p, v - 1),whereP i8 defined by 

aij a;+1,,1+ agi+,, i = 1, 2, * * , v- 1, 

dij ai+,j+l, ij = 2, 3, ***, v 1, 

bi bj+l, j = 2,3 ... , v -1 

1= b1 + b2. 

Proofs. These lemmas follow since, for P and P, any (1 has the same value. For 
Lemma 4 this is trivial; for Lemma 5 we consider an elementary weight 'D which 
takes the value E!-= bixi for P and gii b for P. We will prove by induction on 
r, the order of 1A, that 

XI = X2 = :1, 

x= Xi-, i = 3, 4, **, v, 

so that Lemma 5 will follow. 
For 1' = 0 the result is clear. We now suppose r > 1 and that 4( = [4bD2 ... 4)j] 

Since (P, * **, 4 have orders less than r we may further suppose that 

Xil = Xi2= X4i 

Xii = ;ijj-i, j = 3, 4, **, v, 

where we have written, for i = 1, 2, ... *, 8 

's = Z 
bjxj3 (for P), 

v-1 

4si= E>bj&j, (for P). 
j-4 

Since a,21 = c2= 0, we now have 
8 V 

x2 = II Z a2jXij 0. 

Also, since a= a2= a1= d12= 0, we have xi= x 0. Hence, 
X1 = X2 = X1-We also have, for i = 3, 4, . v, 

8 V-1 

%?1= II E Z j-1 kkjk 
j8i k-i 

P-i 

(aiXii + ai2Xj2 + E aik+lxik+l) 
k-2/ 

i=.i k-i 

= Xi. 
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LEMMA 6. If c,_i = c, = 1 and P E S(p, v), where p _ 2, v _ 3, then there is a 
P E S(p - 1, v - 2). 

LEMMA 7. If c, = 1, ba1 = O and P E S(p, v), where p > 2, v > 3, then there isa 
P E S(p - 1, v - 2). 

Proofs. To prove Lemmas 6 and 7 we apply Lemma 3 and notice that, in either 
case, the P formed is such that b,1 = 0. We now apply Lemma 4 to P and the results 
follow. 

LEMMA 8. If p > v > 0, then S(p, v) is empty. In particular, So(p, v) is empty. 
Proof. In view of Lemma 2 and the obvious fact that S(p + 1, v) C S(p, v), 

it is sufficient to prove that S(2, 1) is empty. If P E Sn(2, 1), we would have 

(4I b bc - (2 +n)!' 

which is not true, since cl = 0. 
LEMMA9. If PE S(4,4),thenc4 = 1. 
Proof. If we write 

U = {ci, c2, 2ci' - c2: i = 2,3, 41, 

V = tbi, bici, (n + 1)b' - (1 - c)b: i = 2, 3, 41, 

and suppose that P E S.(4, 4), then the product is 

1! 2! 1 

(n + 2)! (n + 3)! 

UTV 2! 3! 0 
(n + 3)! (n + 4)! 

_ 0 0 OJ 
The various components in this product are easily verified. For example, 

4 

E ci 21 (n + 1)bi' - (I - ci)bl = (n + 1)[202]2 - [02] + ['8] 

i-2 

=(n + 1 ) - i-+ 4 
12(n + 4)1 3(n + 3)I 4(n + 4)i 

=0. 

Thus U, V satisfy the conditions of Lemma 1 so that either 2c2'- c 0 or 
(n + 1)b4' (1 - c4)b4 = 0. But C2' = b4' = 0 so that either C2 = 0 or b4 = 0 
or c4 = 1. The first two alternatives must be rejected as they lead, using Lemmas 5 
and 4, to the existence of a member of S(4, 3), which is impossible by Lemma 8. 
Hence C4 = 1. 

LEMMA 10. S(5, 5) i8 empty. 
Proof. Suppose P E S. (5, 5). Using the construction of Lemma 2 we can find 

P E S(4, 4) with 4 = c4. Hence C4 = 1. We now use Lemma 1 again with the 
matrices 

U = I c, cl2, 2c' - ci2: = 2, 3, 51, 
V = {b,(I - ca), bici(1 ci), [(n + 1)bi' - (1 - cj)bi](1 - ce): i = 2, 3, 51. 
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It is easily verified that the product UTV is in the correct form. Note that i = 4 
can be omitted from the various sums defining the elements in UTV since C4 = 1. 

Hence, we deduce as for the proof of Lemma 9 that c2 =0 or b5 = 0 or c5 = 1 and, 
again, the first two alternatives must be rejected. Hence, c5 = C4 = 1 so that an 
application of Lemma 6 yields a member of S(4, 3), contrary to Lemma 8. 

LEMMA 11. S(p, p) is empty if p ? v ? 5. 
Proof. This result follows from Lemmas 2 and 10. Theorem 1 is a corollary. 
LEMMA 12. If P E S(6, 7), then C7 = 1. 

Proof. We suppose P C S.(6, 7). Consider the matrices 

U = {c, , ci2, ci3, 2ci' - Ci2, (2ci' - ci2)(Ci - C2), 3c" - ci'c : i = 2, 3, 4, 5, 6, 71, 

V = {bi, bici , b ci2, (n + i)bi - bi(l - ci), [(n + 1)bi' - bi(l -c)]Ci C7), 

(n + 2)b" -b -'(- ci): i -2,3, 4, 5, 6, 71. 

It is found that 

UTV [ g]X 

where W is a nonsingular 3 X 3 matrix and 0 denotes a zero matrix. Hence, either 
U or V has rank less than 5. Suppose it is U. Since a (row) null vector of UT is 
also a null vector of UTV, such a vector must have the first three components 
zero. If there were a null vector with the fourth component non-zero, it would 
follow that 2c2' - C22 = 0 since (2ci' - Ci2) (Ci - C2) and 3ci" - ci'ci both vanish 
when i = 2. If there were Ino such null vector, it would follow that (000010) and 
(000001) are each null vectors so that (2c3' - C32) (C3 - C2) = 3c3I -C3 C3 = 0. 

In the case when V has rank less than 5 it would follow similarly that (n + 1 ) b7' - 

b7(1 - C7) = Oor [(n + 1)b6' - b6(1 - C6)](C6 -C7) = (n + 2)b6 - b6'(1 - C6) = 0. 

Using the fact that C2' = C3" = b7f = b6" = 0, the four alternatives simplify to 

(4) C2 = 0, 

(5) (2C3' - C32 )(C3 - C2) = C3C3- 0, 

(6) b7(1 - C7) = 0, 

(7) [(n + 1)b6' - b6(1 - C6)](C6 - c7) = b6'(1 -C6) = 0. 

The possibility that c2 = 0 is rejected as it would imply the existence of a member 
of S(6, 6). Assuming that c2 # 0, (5) implies that C3' = 0. We now use Lemma 1 
with 

U = {ci', c'ci , 3ci" - ci'ci: i = 4, 5, 6}, 

V = {bi', bi'ci, (n + 2)bi" b-'(- ci): i = 4, 5, 61, 

and deduce that C4'C4 = 0 or b6' (1 -C6) = 0. If C4' = 0, we have 0 = Z=1 b"ci' = 

l/(n + 6)!, a contradiction. If C4 = 0, we use Lemma 1 with 

U = {ci'C , ci'ci2, 4ci" - ci"ci = 5, 6, 7}, 

V = {bi, bici, (n + 1)bi' -bi(l- c): i = 5, 6, 71, 

to deduce that C5C5 = 0 or b7(1 - C7) = 0. If c5" = 0 (and also C4" 0, since 
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Ca' = 0) we find 0 Zi-1 bi"ci' = 1/(n + 6)!, a contradiction. If c5 = 0, we find 
0 = EIJ1 bi cc,' = 3/(n + 6)!, a contradiction. The possibility b7 = 0 is im- 
mediately rejected as it leads, by Lemma 4, to the existence of a member of S(6, 6). 
Thus the present alternative leads to the result c7 = 1. 

Still assuming ca' = 0, we now consider the possibility that b6'(1 - ct) = 0. 
We must reject the possibility that ba' = 0, since S(5, 5) is empty. Hence ce = 1. 
We now apply Lemma 1 once more with 

U = {ci , cici, 3ci" - cci: i = 4, 5, 71, 

V = {bi(l - c), bici(l - ci), [(n + 1)bi' - bi(l - ci)](1 -c): i = 4, 5, 71, 

and deduce that c4'C4 = 0 (previously rejected) or b7(1 - C7) = 0. Again this leads 
to the result that C7 = 1. 

We now pass on to the alternatives (6) and (7). (6) implies that C7 = 1. If 
C7 ? 1, (7) implies ba' = 0 which leads to a contradiction to Lemma 10. 

LEMMA 13. S(7, 8) ia empty. 
Proof. We suppose there is a P E S,(7, 8). Using the construction of Lemma 2, 

we see that Lemma 12 may be used to deduce that c7 = 1. We recall also, from the 
proof of Lemma 12, that either c,' = C4 = 0, ore = 1 or neither of (4), (5) is 
satisfied. 

If c8' c = 0, we use Lemma 1 with 

U {cj'c, ci'c~J, 4c," - c"c i = 5, 6, 81, 

V = {b( - c,), bci(l - ci), [(n + 1)bi' - b,(l - c,)](1 - c,): i = 5, 6, 81, 

to deduce that cbc511 = 0 (rejected as in the proof of Lemma 12) or else ba(l - c8)2 
= 0. Hence co 1 and we use Lemma 6 to find a member of S(6, 6), contrary to 
Lemma 11. 

If cC = 1 we again use Lemma 6 to find a member of S(5, 5), which is im- 
possible by Lemma 10. Hence, neither (4) nor (5) is satisfied. We now use the type 
of argument used at the start of the proof of Lemma 12 with the matrices 

U = IC, c12, ci8, 2ci' - ci2, (2ci' - Ci2)(Ci- c2), 3c," - cici: 

i 2, 3, 4,5, 6, 81, 

V - bd1 -ci), bici(l - ci), bjcj2(1 -ci), [(n + 1)bi' - bi( - c)](1 -ci), 

(n + 3) bi'(l cj)aji - bi'(1 - ci)2: i 2, 3, 4, 5, 6, 8), 

to deduce, since the rank of U exceeds 4, that one of the following results holds: 

[(n + 1)bs' - b( 1 - C] Cs) - C 0, 

(n + 3), b/'(1 ca)ao - be'(1 -ct)2 O 0, 

and this implies that be' or be is zero or that et or co is unity. If be' 0 we use Lemma 
2 followed by Lemma 7 to obtain a member of S(5, 5), contrary to Lemma 10. The 
remaining possibilities have all been previously considered and disposed of. 
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LEMMA 14. S(p, P) is empty for p + 1 > v _ 8. 
Proof. The result follows from Lemma 2 and Lemma 13. Theorem 2 is a corollary. 
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